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Introduction

Hazardous Air Pollutants
In 1990, Clean Air Act Amendment, Title
III, Hazardous Air Pollutants, mandated
exposure standards for 189 compounds
[referred to as hazardous air pollutants
(HAPs) or urban air toxics (UATs)] and
emissions control strategies of 30 or more
compounds that present the greatest risk to
public health. Between 1996 and 2001, one
compound was removed from the list and a
shorter list of 33 HAPs was developed
through consideration of several possible
health concerns, with a major emphasis on
carcinogenicity, mutagenicity, and terato-
genicity. Cancer commonly is used in risk
assessment modeling and allows mathemati-
cal comparisons of risk estimates among com-
pounds. Noncancer risks also are used in
modeling and include reproductive, neuro-
toxic, and respiratory effects. Other adverse
health outcomes, especially asthma, chronic
obstructive pulmonary disease, and cardiovas-
cular disease, also are important to exposed
populations because of their high prevalence.
Yet, much less is currently known about the
threshold concentrations and lifetime
(chronic) exposures associated with these dis-
eases. This review updates a previous exami-
nation of the possible relationship between
these compounds and asthma (1). Much still
remains to be understood about the complex

relationship between exposure to these
compounds and the development and
exacerbation of asthma morbidity.

The ongoing use of over 50,000 commer-
cial chemicals continues to present a major
challenge to environmental health scientists
because each compound could be considered
toxic depending on the magnitude of human
exposure, the dose delivered to the target
organ, and the biological response. Without
complete information on each compound,
the systematic evaluation of the toxicology of
these chemicals can only be preliminary.
Many decades of effort will be required
before we understand the relationships
between environmental exposure and poten-
tial to cause or exacerbate human diseases. In
the previous review (1), we presented an ini-
tial ranking of HAPs based on the likelihood
and extent of potential human exposure and
the severity of the response. The outcome of
that review led to an emphasis on acquisition
of additional data on personal exposure
assessment. The present review focuses anew
on the current gaps in the toxicology litera-
ture and recommends research that may help
reduce the uncertainty of future evaluations
of the health effects of these compounds.

Under the national air toxics program,
the U.S. Environmental Protection Agency
(U.S. EPA) continues to assess emissions
from stationary and mobile sources to

improve air quality in urban and rural areas,
and the database being generated is extensive
(e.g., see website http://www.epa.gov/triex-
plorer/reports.htm). Since 1995 the U.S. EPA
also has initiated an Integrated HAP
Strategy to address emissions in urban coun-
ties. A county is designated “urban” if it
contains a metropolitan statistical area (pop-
ulation > 250,000) or if the U.S. Census
Bureau designates >50% of the population
as urban. An initial outline of actions to
reduce HAP emissions and activities to
improve the understanding of the health and
environmental risks posed by air toxics in
urban areas has been presented. The major
outcome of this effort was a list of 33 HAPs
that pose the greatest potential health threat
in urban areas (Table 1) with an accompa-
nying assessment of the area sources respon-
sible for a substantial portion of these
emissions. The latter includes 29 area source
categories (including 13 new categories not
previously subject to standards). Although
this review focuses mostly on the short list of
33 compounds, I also discuss additional
members of the original 189 HAPs that are
still important to asthma.

Persons with Asthma and Increased
Susceptibility to Air Pollution
Air quality standards must protect suscepti-
ble individuals in the general populations,
and persons with asthma clearly are at
increased risk from the adverse effects of air
pollution. Asthma is a complex respiratory
condition operationally defined as a respira-
tory disease with three primary features
(2–4). These include a) airway inflammation
associated with cytokine formation,
eosinophilic infiltration, and altered T-cell
lymphocytic function; b) altered epithelial
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estimated exposures from emissions inventories and limited air monitoring suggest that aldehydes
(especially acrolein and formaldehyde) and metals (especially nickel and chromium compounds) may
have possible health risk indices sufficient for additional attention. Recommendations for research
are presented regarding exposure monitoring and evaluation of biologic mechanisms controlling how
these substances induce and exacerbate asthma. Key words: acrolein, aldehydes, asthma, cadmium,
chromium, formaldehyde, hazardous air pollutants, metals, nickel, ozone, particulate matter, urban
air toxics. Environ Health Perspect 110(suppl 4):505–526 (2002).
http://ehpnet1.niehs.nih.gov/docs/2002/suppl-4/505-526liekauf/abstract.html

Hazardous Air Pollutants and Asthma

George D. Leikauf

Center for Environmental Genetics, Departments of Environmental Health, and Pulmonary and Critical Care Medicine, University of
Cincinnati, Cincinnati, Ohio, USA



506 VOLUME 110 | SUPPLEMENT 4 | AUGUST 2002 • Environmental Health Perspectives

function associated with thickening of the
basement membrane, mucin hypersecretion,
lost or altered cilia structure, and altered
cytokine and other inflammatory mediator
production; and c) recurrent airflow obstruc-
tion often presenting in acute phases as
decreased forced expiratory volume and
reversible bronchospasm followed by persis-
tent airway hyperreactivity. Although the fre-
quency of asthma is greater among atopic
individuals (5), not all persons with asthma
(e.g., as much as half the adults with occupa-
tional asthma) (6) exhibit specific antigen–
antibody responses. Recently, however, this

observation has been debated because
20–40% of the population may be atopic.
Atopy is usually assessed by skin provoca-
tions with known allergens, but skin tests do
not always uncover aeroallergens specific to
asthma. Thus, not all airway antigens may be
known for each person. Persons with asthma
respond to many nonantigenic agents,
including dry air, hypo/hypertonic aerosols,
acidic aerosols, and sulfur dioxide.
Consequently, this latter condition is called
nonspecific airway hyperreactivity, which
many clinical investigators consider the
hallmark of asthma (3,7).

Gene–Environment Interaction 
in Asthma

The molecular basis of asthma is currently
under extensive study in many laboratories.
Briefly, the development and expression of
asthma involve three stages (Figure 1). The
first stage is an initial inherited susceptibility
to atopy and asthma. This susceptibility
involves host factors that include inherited
polymorphisms. Individuals with these poly-
morphisms may be at added risk of develop-
ing asthma, yet the overt symptoms may
never develop. Exactly which genes control an
asthma phenotype(s) is unclear, but it is clear
that asthma is likely to be controlled by mul-
tiple genes (Table 2). Several likely candidate
genes have been identified. For example, one
chromosomal region harbors a leading candi-
date gene, immunoglobulin E (IgE), and the
IgE molecule is a critical antibody in acquired
immunity. In allergic asthma, specific
immunologic responses (e.g., proteins carried
on airborne particulates) are mediated by
(and will not occur without) a preliminary
sensitization step that involves generating IgE
or occasionally immunoglobulin G (IgG)
antibodies. This process confers a high degree
of specificity (e.g., individuals allergic to one
laboratory species, e.g., rats, often will not
develop asthma exacerbations when exposed
to a similar species, e.g., mice). Sensitization
leads to an exquisite responsiveness that
induces disease responses to airborne expo-
sures in the range of nanograms to picograms
per cubic meter. In addition, the penetrance
of an asthma phenotype depends on environ-
mental exposures; therefore, asthma is clearly
a complex disease. Thus, as defined here, the
first stage could be considered latent asthma
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Table 1. Hazardous air pollutants of greatest concern for exposure and
health effects.a

Acetaldehydeb Formaldehydeb

Acroleinb Hexachlorobenzene
Acrylonitrile Hydrazineb

Arsenic compounds Lead compounds
Benzeneb Manganese compoundsb

Beryllium compounds Mercury compounds
1,3-Butadiene Methylene chloride
Cadmium compoundsb Nickel compoundsb

Carbon tetrachloride Perchloroethylene
Chloroform Polychlorinated biphenyls
Chromium compoundsb Polycyclic organic matter
Coke oven emissionsb Propylene dichloride
1,3-Dichloropropene Quinoline
Dioxin 1,1,2,2-Tetrachloroethane
Ethylene dibromide Trichloroethylene
Ethylene dichloride Vinyl chloride
Ethylene oxideb

aData from http://www.epa.gov/triexplorer/reports.htm. bCompounds suspected of
inducing or exacerbating asthma (Table 5).

Susceptibility and expression of asthma

Airway Susceptibility Development Progression

Recovery

Exacerbation

Environment

Genetics

Figure 1. Susceptibility and expression of asthma. Individuals inheriting a cer-
tain array of multiple alleles of susceptibility genes are at added risk from
birth of developing asthma. This susceptibility may become evident when an
initial sensitization and exacerbation occur in early childhood and when
immunity (typically mediated by immunoglobin) develops to aeroallergens.
Asthma may remit or progress, depending largely on the environmental expo-
sures of each individual. The combination of numerous gene–environment
interactions leads to the expression of this complex disease.

Table 2. Candidate genes associated with asthma from linkage analyses of human populations (364–382).

Chromosome Locus Candidate genes (35)a

1 p IL12RB2
2 q CD28, SCYA20
5 q31–33 IL13, IGES, CSF2, IL3, IL4, IL5, IL9

q33–35 CSF1R, ADRB2, NR3C1, LTC4S
6 p21–23 HLA, HSP1A1, IER3, LTA (TNFβ), TAP1, TAP2, TNFA, NFYA

10 q ALOX5
11 q13 IGR, UGB, FGF3
12 q14–24 IFNG, NFYB, IGF1, LTA4H, NOS1,
13 q21–24 Unknown
14 q11–13 TCRa/d, NFΚBIA
16 p11–12 IL4RA
aGene abbreviations (from Unigene: http://www.ncbi.nlm.nih.gov/UniGene/ ): IL: interleukin; R: receptor (e.g., IL12RB2:
interleukin-12 receptor beta-2); CD28: antigen CD28 (T-cell antigen CD28 Tp44); SCYA20: small inducible cytokine sub-
family A, member 20 (Exodus 1, macrophage inflammatory protein 3 alpha); IGES: immunoglobulin E concentration, serum;
CSF2: colony-stimulating factor-2 (granulocyte-macrophage); CSF1R: colony-stimulating factor-1 receptor; ADRB2: adren-
ergic receptor beta-2 type; NR3C1: nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor); LTC4S:
leukotriene C4 synthase; HLA: major histocompatibility complex (gene cluster); HSP1A1: heat shock protein 70 kDa; IER3:
immediate-early response 3; TAP1: transporter 1, ATP-binding cassette, subfamily B; TAP2: transporter 2, ATP-binding
cassette, subfamily B TNFA: tumor necrosis factor-alpha; LTA: lymphotoxin A (formerly tumor necrosis factor-beta);
NYFA: nuclear transcription factor Y, alpha; ALOX5: arachidonate 5-lipoxygenase; IGR: IgE responsiveness, atopic (also
membrane-spanning 4-domains, subfamily A, member 2 or Fc fragment of IgE, high affinity I, receptor for, beta polypep-
tide: FCER1B); UGB: uterglobin (Clara cell secretory protein or Clara-cell specific 10-kDa protein); FGF3: fibroblast growth
factor 3; IFNG: interferon-gamma; NFYB: nuclear transcription factor-Y, beta subunit; IGF1: insulin-like growth factor 1;
LTA4H: leukotriene A4 hydrolase; NOS1: nitric oxide synthase 1 (neuronal); TCRa/d: T-cell antigen receptor, alpha and
T-cell antigen receptor, delta; NFΚBIA: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
IL4R: interleukin 4 receptor (alpha).



Environmental Health Perspectives • VOLUME 110 | SUPPLEMENT 4 | AUGUST 2002 507

in individuals with increased risk due to
inherited susceptibility (asthma genotypes).

The second stage is the development of
clinically discernable asthma. This often
occurs during the first 3–6 years of life in per-
sons with allergic asthma. Susceptible individ-
uals become sensitized via specific IgE
antibody formation. In addition, the condi-
tion is expressed fully (development of height-
ened sensitivity) upon repetitive exposure to
environmental triggers (antigens) such as
house dust mite allergens. Persons who inherit
susceptibility genes (asthma genotypes) begin
to develop symptoms (phenotype) upon
exposure (environmental penetrance).

The initial process of sensitization, a key
event that precedes the development of
asthma, can be enhanced by coexposures to
adjuvant. In immunization methodology, an
adjuvant serves two functions: acting as a
vehicle that permits delivery without rapid
clearance and having irritancy that activates
cells critical to innate immunity (e.g., tissue
macrophage or dendritic cells), which
sequester and present antigen to T-type lym-
phocytes (T-cells). To enhance antigenicity,
adjuvant consists of a vehicle in which anti-
gen is absorbed (e.g., suspension of minerals
including aluminum hydroxide or phos-
phate), water–mineral oil emulsion (i.e.,
Freund’s incomplete), or water–mineral oil
with killed mycobacteria (i.e., Freund’s com-
plete). Several environmental chemicals,
including diesel particles, may share the

attributes of adjuvants. Presentation of
antigen to T-cells causes clonal expansion of a
subtype of T-cells [T-helper cells, type 2
(TH2)], induction of IgE (or IgG) antibody
formation by B-type lymphocytes, and release
eosinophil growth factors and chemoattrac-
tants. This process is accomplished through
mediators that are released upon stimulation
of subpopulations of immune cells (Figure 2).

The third stage of asthma involves progres-
sion, in which chronic inflammation, epithelial
cell and matrix remodeling, and airway
smooth muscle effects predominate. Cellular
changes in the airways include persistent
eosinophilia, mast cell activation, and mucus
cell proliferation (Figure 3). Re-exposure to
antigen induces bronchospasm and may pro-
duce irreversible remodeling of the airways and
only partial recovery. This stage is accelerated
by repetitive exacerbations that worsen the
condition incrementally. Recovery is mainly
influenced by avoidance of antigen stimuli and
treatment with corticoid steroids and other
anti-inflammatory and epithelial cell growth
enhancers that modulate recovery (Figure 1).

A complex disease, asthma is recognized
to be oligogenetic, that is, a phenotype under
the control of multiple genes. In addition,
environmental exposure is critical for many of
these genes to be expressed or phenotypes to
be observed, i.e., variable penetrance due to
environmental factors. Examination of a sin-
gle gene (or the role of a single polymor-
phisms) in complex diseases such as asthma is

likely to inform us only about a portion of
the phenotype. Alternatively, interactions of
multiple chromosomal regions can be uncov-
ered by genomewide scans. These scans
involve assessment of linkage of the pheno-
type with polymorphic genetic markers dis-
tributed at selected intervals on each
chromosome (i.e., linkage analysis). This has
been done in human populations, and multi-
ple candidate genes present in these chromo-
somal regions have been identified (Table 2).

In addition, various phenotypes impor-
tant to asthma (e.g., bronchial hyperreactiv-
ity) have been examined using genomewide
scans in laboratory animals. For example
many recent studies have used offspring from
polar inbred mouse strains to identify chro-
mosomal regions [quantitative trait loci
(QTLs)] containing possible candidate genes
with linkage to atopy (e.g., high levels of
inducible immunoglobulin) or physiological
responses consistent with asthma (e.g., resting
airway reactivity) (Table 3). Transgenic mice
can then be used to functionally analyze genes
suspected of contributing to quantitative
traits. This approach enables examination of
the role a single gene may play, but it can be
impractical for surveying the large genomic
intervals containing many genes that are typi-
cally associated with QTLs. To screen for
genes contained in an asthma-linked QTL
mapping to human chromosome 5q31,
Symula et al. (8) generated a set of transgenic
mice containing large inserts of human DNA
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Cellular mechanisms of asthma
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Figure 3. Cellular mechanisms of asthma. The B cells that are activated to pro-
duce antibody (IgE) that specifically binds aeroallergens such as house dust
mite or pollens. When dimers of IgE–antibody complex bind to the IgE recep-
tor, the mast cells become activated to release mediators [e.g., histamine and
leukotriene (LT) C4), which alter airway function. In addition, the local migration
of eosinophils into and maintenance of eosinophils in airway epithelium is
induced by local production of chemotactic cytokines (chemokines), including
small inducible cytokine 12 [SCYA12; also known as monocyte chemotactic
protein-5 (MCP-5)], eotaxin, and RANTES (regulated upon activation, normally
T-expressed, and presumably secreted; also known as SCYA5). These media-
tors also activate eosinophils to release preformed major basic protein,
eosinophil cationic protein (ECP), and LTC4. The combination of all these
events with the direct damage air pollutants can do to the epithelium leads to
the develop and progression of the cardinal features of asthma: reversible
bronchospasm, airway smooth muscle hyperreactivity, increased mucus pro-
duction and secretion, and extracellular matrix remodeling.

Cellular mechanisms of atopy
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Figure 2. Cellular mechanisms of atopy. In the development of atopy (or
systemic allergy), subpopulations of helper T-cells (a subtype of lympho-
cytes that stains positively with the surface marker CD4+) vary and alter
the expression of cytokines. These cytokines in turn alter effector cells by
influencing proliferation and function of B-cells (lymphocytes that pro-
duce antibody, IgE, or IgG) and eosinophils. When the precursory helper
T-cells (TH0) mature, they will become TH1 or TH2 subtypes, which sup-
press or augment effector cell function, respectively, by releasing differ-
ing arrays of cytokines. The TH1 cell release interferon-γ (IFNγ), tumor
necrosis factor-α (TNFα), and IL-2y, which inhibit (cyan arrow) TH2 differ-
entiation and B-cell antibody formation. In contrast, TH2 cells release IL-4,
IL-5, IL-9, IL-10, and IL-13, which inhibit TH1 differentiation and augment
eosinophil proliferation and B-cell antibody formation (mainly through
binding to the IL-4 receptor).
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(yeast artificial chromosomes) that together
covered over a 1-Mb interval of 5q31. This
region contains 6 cytokine genes and 17 par-
tially characterized genes. Mice were screened
for altered IgE response to antigen treatment.
The transgenic lines that were highly respon-
sive shared a 180-kb region containing five
genes, including interleukin-4 (IL-4; 147780)
and IL-13 (147683), that can induce IgE class
switching in B-cells. Further analysis of these
mice and other mice transgenic for mouse
Il-4, Il-5, Il-9, and Il-13 demonstrated
asthma-associated phenotypes in vivo (9–12).
The causative and interactive role of the
human and suspected (from inbred mouse
genotyping) candidate genes is under further
investigation, but a preliminary presentation
of the role of these genes in the natural history
of asthma can be envisioned (Figure 4).

Asthma can be transient (developing and
remitting during childhood) or persist for
many years, with respiratory signs and symp-
toms that are erratic in frequency and sever-
ity. Recovery is difficult to predict and may
lead to an intrinsic, sporadic nature that con-
tributes to a major concern for this disease.
With adequate medication, persons with
asthma may become symptom free for many
years. Nonetheless, severe, life-threatening
asthmatic attacks can arise rapidly.
Sometimes these attacks are initially pre-
sented as mild symptoms to which the victim
has long become accustomed. Therefore,
patients and physicians may depend solely on
self-administered bronchodilators for therapy,
assuming relief is shortly in hand, only to be
faced with a rapidly mounting array of irre-
versible changes (e.g., airway obstruction by
mucus inspissations). Indeed, this lack of
appreciation for this condition by patients
and general practitioners along with inappro-
priate bronchodilator therapy has been con-
sidered to contribute to increases in asthma

mortality (13–17). Without recognition of
the inflammatory and epithelial components
of this disease, early therapies directed solely
at preventions of bronchospasms can leave
the persistent inflammatory condition
unchecked. In addition, patients relieved of
symptoms may be less likely to avoid environ-
mental exposures that increase epithelial
injury and may hasten acute attacks.

Effects of Irritants in Persons 
with Asthma
One consequence for persons with asthma is
an increased susceptibility to lower doses of
inhaled irritants. Controlled exposures of
asthma patients note responses at lower con-
centrations of inhaled compounds than do
healthy control subjects (18). Studies have
found effects with a broad range of irritants,
including several criteria air pollutants: SO2
(19,20), NO2 (21–24), and acidic sulfates
(25–29). Thus, the standard concentrations
of these compounds have been lowered to
protect these individuals, as mandated by the
Clean Air Act. Recently, several studies have
found that diesel exhaust particles (DEPs)
may have a role as a mucosal adjunct in the
induction of sensitization to antigen and can
enhance total antibody (IgE) formation
(30–32). Persons with asthma may be at
increased risk of airway responses to inhaled
acetaldehyde (33). Evidence also suggests that
DEPs can augment TH2 while inhibiting
TH1 (interferon-gamma) formation in vitro
(34,35) and in vivo (36–38). DEPs are of spe-
cial relevance to HAPs because they consist of
numerous organics, aldehydes, and metals
that are HAPs or share toxic properties with
HAPs. For example, phenanthrene, an aro-
matic hydrocarbon contained in DEPs, pro-
duces many of the effects noted with
complete DEPs (including enhanced antigen-
specific IgE production) (39,40).

Although irritants alone may have mixed
effects, interactions between irritants and
inhaled antigens may contribute to asthma
exacerbations. For example, clinical studies of
ozone’s effects among persons with asthma
have been controversial, and whether these
individuals respond to lower concentrations
than do control subjects remains unclear
(41–43). However, ozone exposures can
increase bronchial reactivity to subsequent
antigen challenges among asthma patients
(44–46). A similar effect has been found with
exposures to NO2 (47,48), particulate matter
(49), and DEPs (50). The mechanisms for
these interactions are unclear, are likely to be
complex, and may include altered deposition
or reduction of epithelial barrier functions.
Recent evidence suggests that DEPs may aug-
ment exposure to inhaled antigens by carry-
ing antigens through the upper respiratory
tract and increasing deposition in the con-
ducting airways (51). Such effects, although
indirect, may make persons more responsive
to an allergen to which they are sensitized.
Seasonal increases in asthma symptoms dur-
ing periods of increased air pollution and
antigen exposure may partially be explained
by this interaction.

Much has been learned from irritant
exposure studies, yet the results from studies
with persons with asthma have to be viewed
with caution. Qualitatively, these studies can
be useful in assessing whether specific pollu-
tants affect persons with asthma to a greater
extent than healthy subjects and possibly giv-
ing valuable insights into mechanisms con-
trolling responses. However, clinical findings
have been quantitatively different from epi-
demiologic findings: in clinical studies, the
lowest effective concentration that produces
bronchoconstriction is often higher than that
found to produce adverse pulmonary effects
when subjects are exposed in free-roving envi-
ronments. Because asthma varies in its sever-
ity, a selection bias of subjects with milder
forms of the disease could be responsible for
the difference noted between clinical and epi-
demiologic studies. Typically, studies of
asthma are conducted when persons are with-
out symptoms and currently not using med-
ication. Persons with severe asthma rarely are
symptom free and will often develop diffi-
culty in breathing (reduced lung function)
without continually using corticosteriods.
Obviously, this selection basis makes results
only partially representative of all persons
with asthma in the general population.

Epidemiologic Studies of Persons
with Asthma
In epidemiologic studies, associations
between air pollution (mainly focusing on
criteria pollutants) and the prevalence of res-
piratory symptoms characteristic of asthma
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Table 3. Candidate genes associated with asthma from linkage analyses of inbred mice (383–388). 

Chromosome Locus (cM) Homologue Candidate genes (22)a Phenotypeb Agonistc

2 73 2q13–21 Il1b, Bhr1 RL Mch
6 47 3p24–26 Il5ra, Ly36, Ly49 APTI Ach
9 18 11q23 Il10r Penh Ova/Mch

10 44 12q22–24 Ifng Penh Mch
11 29 5q27–31 Il4, Il5, Il13, Csf2 Eos Ova

RL Mch
52 17q12–22 Nos2, Scya11 Penh Ova/Mch

15 50 22q12–13 Il2rb, Csfrb1, Csfrb2, RL Mch
Pdgf, Bhr2

17 18 6p21 Tnf, Mcpt6, Mcpt7 Penh Ova/Mch
Bhr3 RL Mch

aGene abbreviations (from Unigene: http://www.ncbi.nlm.nih.gov/UniGene/ ): Il1b: interleukin 1 beta; Bhr1: bronchial
hyperresponsiveness 1; Il5ra: interleukin 5 receptor, alpha: Ly36 Lymphocyte antigen 36, Ly49: lymphocyte antigen 49;
IL10: interleukin 10 receptor; Ifng: interferon gamma; Il: interleukin; Csf2: colony stimulating factor 2 (granulocyte-
macrophage); Igf1: insulin-like growth factor 1; Nos2: nitric oxide synthase 2, inducible, macrophage; Scya11 small
inducible cytokine A11 (eotaxin); Il2rb: interleukin 2 receptor, beta chain; Csf2rb1: colony stimulating factor 2 receptor,
beta 1, low-affinity (granulocyte-macrophage); Pdgf: platelet derived growth factor, B polypeptide; Bhr2: bronchial hyper-
responsiveness 2; Tnf: tumor necrosis factor; Mcpt6, mast cell protease 6; Mcpt7: mast cell protease 7. Bhr3: Bronchial
hyperresponsiveness 3. bPhenotype abbreviations: RL: lung resistance; APTI: airway pressure-time index; Penh:
enhanced pause (airflow/rate change); Eos: eosinophils in bronchoalveolar lavage. cAgonist abbreviations: Mch: metha-
choline; Ach: acetylcholine; Ova/Mch: methacholine after ovalbumin challenge; Ova: ovalbumin challenge.
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have been noted throughout the world. These
studies have found that current levels of cri-
teria air pollutants [particularly particulate
matter with a mass median aerodynamic
diameter  ≤10 µm (PM10) or ≤2.5 µm
(PM2.5)] are associated with increases in
prevalence of respiratory symptoms (wheez-
ing, cough, and chest tightness) (52–62) and
in emergency department visits or hospital
admissions for asthma (63–81). When the
data from atopic and nonatopic patients were
separated, the association with air pollution
was unaffected (54,56,69), suggesting that
both are affected by air pollution. This sup-
ports findings of clinical studies that suggest
that irritants interact with inhaled antigens.
Air pollution has also been associated with
augmented respiratory signs, including
decreases in pulmonary function, demon-
strated by depressed forced expiratory vol-
ume in l sec (FEV1.0) or peak expiratory flow
rate (PEFR) (71,76).

The criteria air pollutant with the
strongest statistical association differs
among studies, but often PM2.5 and sulfate
are implicated. Sulfur dioxide has been asso-
ciated with respiratory responses in some
studies (54,67,68) but not others (63).
Although weather, pollen, and environmen-
tal tobacco smoke (ETS) are important risk
factors for asthma, each has been found to

act independently of air pollution, and thus
they do not explain the association between
air pollution and asthma (55,66,74,81–85).

Because these associations were identi-
fied while criteria pollutant concentrations
either decreased or maintained levels noted
in previous years (83–110), scientists have
argued against the role of criteria pollutant
concentrations in inducing asthma.
However, because the relationship between
current exposure to these pollutants and
asthma exacerbation remains, further exam-
ination of the role of and possible further
reductions of HAP exposure remain reason-
able. In addition, the cross-sectional studies
that found associations were conducted over
short periods, so any recent changes in diag-
nostic criteria for asthma are not likely to
explain these associations (94–95,107–110).
Together, these studies provide evidence
that air pollution can act as a complex mix-
ture and at current exposure levels can affect
the exacerbation and possibly the develop-
ment of asthma. Relevant to this assessment
of HAPs are the associations between sta-
tionary sources and adverse health outcomes
(54,65,75,86–92). Along with the observa-
tion that different pollutants often lead to a
similar array of responses, these findings
suggest that the specific compounds mea-
sured may be serving as indicators of a

wider array of air pollutants (including
UATs) generated from stationary sources.

Exposure Assessment

HAP Entry and Fate in the
Environment
The quantification of human exposure
remains a primary issue in assessing the culpa-
bility of HAPs in exacerbating asthma
because existing air sampling networks do not
quantify the ambient concentrations of these
compounds on a hourly, daily, or yearly basis.
Currently, data collection efforts have focused
on emission inventories that may have value
in understanding this problem.

HAPs can enter the environment by a
number of pathways, including release into
the air (e.g., vaporization of gases), soil, or
water. The most relevant route of entry into
the environment is total air release, which
often is the largest source of release
(Figure 5). Exposure also depends on the
intrinsic physical/chemical properties of each
compound, including vapor pressure and sol-
ubility in various media (i.e., water or organic
solvents, etc.). In addition, certain attributes
of the manufacturing and generating proce-
dures (e.g., the temperature of the effluent)
can influence chemical speciation of stack
releases. Highly volatile substances can more
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Figure 5. Hazardous air pollutants release into various media from the U.S.
EPA 1995 and 1999 Toxic Release Inventories (341). Air emissions (which
include fugitive air emissions and release into stacks) were a major source
of release in 1995, making up more than 70% of the total. In 1999, release of
hazardous air pollutants into land increased mainly because of additional
reporting from landfills and onsite mining; release into the air remained a
large source of release. Water is material discharged to streams, rivers,
lakes, oceans, and other bodies of water, including releases from contained
sources, such as industrial process outflow pipes or open trenches and
storm water runoff. Ground is material placed by underground injection or
the subsurface emplacement of fluids through wells, most often associated
with manufacturing, petroleum, mining, commercial, and service industries
and federal and municipal government activities. Land is material disposed
to onsite (within the boundaries of the reporting facility) landfills (buried
waste), land treatment/application farming (applied to or incorporated into
soil), surface impoundments (uncovered holding areas used to volatilize
and/or settle materials), other disposal methods (such as waste piles), or
releases to land (such as spills or leaks). Air (total air emissions) is the sum
of fugitive and stack air material release. Fugitive air emissions are releases
not released through a confined air stream and equipment leaks, evapora-
tive losses from surface impoundments and spills, and releases from build-
ing ventilation systems. Stack air (point) source emissions occur through
placement into confined air streams such as stacks, vents, ducts, or pipes.

Gene–environment interactions controlling asthma

Susceptibility Development Progression
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Genetics
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Figure 4. Gene–environment interactions in asthma. (Top) Susceptibility to
asthma can progress with the exposure to antigen and development of
immunity, with the exposure to additional antigenic and irritating com-
pounds such as nickel sulfate (NiSO4), or during respiratory [e.g., respira-
tory syncytial viral (RSV)] infections or exacerbated by irritants (acrolein
and PM2.5). (Bottom) Candidate genes have been identified through link-
age analysis conducted with isolated human populations and with inbred
mouse studies that are likely to influence the progression of asthma.
These include interleukins (e.g., IL4, IL9, IL13) and their receptors [e.g., the
IL4 receptor (IL4R)], which influence the initiation of sensitization and
immunoglobulin production. Following this, the development of asthma
may be influenced by polymorphisms in the β-adrenergic receptor (sub-
type B2, ADRB2), small inducible cytokine 12 (Scya12, or MCP-5), and the
5´ regulator region of leukotriene C4 synthase (5´regLTC4S). Last, polymor-
phic genes such as IL-1β (Il1b), tumor necrosis factor-α (TNFα), and the
toll-like receptor-4 (tlr4) may go on to influence exacerbations that lead to
progression of the disease.
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readily escape into the ambient air and thus
cause added concern.

Emission inventories for HAPs indicate
that release into the air is the principal route by
which these materials enter the environment.
Total air emissions from stationary sources
include fugitive emissions (e.g., loses due to
vaporization) and emissions through stacks,
which are the greatest source of release (Figure
6). Note that many states that produce the
largest amounts of HAP emission, such as
Ohio and North Carolina, are not as popu-
lated as are larger states, such as New York and
California, suggesting that controls could have
significant impact. Many of the HAP com-
pounds persist in the air by processes that
dominate the formation of the urban aerosol.
Urban aerosols have been chemically character-
ized only to a limited extent in the past
(99–106). However, the standard for PM10
overlaps with specific HAPs because particles
in this size range and smaller often derive from
anthropogenic sources, whereas larger particles
(≥10 µm) arise from natural sources (e.g., sea
salt, soil, etc.).

Another route involves formation
through secondary reactions in the atmos-
phere. For example, several reactive hydro-
carbons are formed during combustion and
can accumulate in the atmosphere
(111–115). These compounds are contained
in urban photo-oxidant plumes and con-
tribute to ozone formation. Because ozone
formation depends on reactive hydrocarbon
species (e.g., aldehydes), the continuous mea-
surement of ozone concentrations could be
useful in estimating the ambient concentra-
tions of precursors that include HAPs.

Interestingly, once inhaled, ozone is likely to
react with unsaturated fatty acids in the air-
way lining fluid or the cell membranes to
form aldehydes, hydroxyhydroperoxides, and
hydrogen peroxide (116,117). These interme-
diates are HAPs and can activate mediator
release from human airway epithelial cells,
thereby linking the biochemical outcomes of
ozone with these compounds (118,119). The
source of these types of HAPs is mixed.
Urban activities including automotive transit,
power generation, manufacturing, solvent
use, and wood burning affect the formation
and release of these compounds. Limiting
ozone precursors (hydrocarbons and nitrogen
oxides) could limit indirectly the entry of cer-
tain HAP compounds into the atmosphere in
the future.

Besides direct release into the air and
secondary formation, volatile HAPs can enter
the atmosphere through intermediate trans-
port. Even though a chemical is released ini-
tially into water, soil, sediment, or biota, if
volatile it will enter the atmosphere eventually
through evaporation from water or soil. For
example, organic compounds with low or
modest solubility in water will partition to the
air–liquid interface after an initial dispersion
as an emulsion in a factory effluent stream;
thus, continuous and sole discharge into water
can unexpectedly generate significant air con-
centration, as revealed in fugacity models
(120,121). Movement from the air into other
media and back again suggests equilibrium
can be achieved or predicted. However, uni-
form dispersion is unlikely in any compart-
ment in real-world situations and further adds
uncertainty in estimating degradation rates in

each compartment. This unpredicted routing
could partially explain why airshed models
that depend solely or heavily on air emission
inventories have underestimated ambient
concentrations.

Dominated by proximity to point
sources, intermittent exposure to HAPs in
high concentrations can depend on regional
meteorology, atmospheric dispersion, trans-
port, and removal. This type of exposure is
difficult to monitor or model. Source–
receptor analysis is therefore valuable. One
element in source–receptor analysis is
the identification of sensitive receptors in
the population downwind from a point
source. Because persons with asthma consti-
tute approximately 4–10% of the residents of
urban areas (122,123), this group remains
one of the largest target populations
and needs further consideration in
evaluation of risks associated with
exposures that could enter the neighborhoods
near emissions sources.

Threshold Concentrations That
Induce Asthma
Unlike many environmental agents that have
been tested only in laboratory animals (e.g.,
compounds associated with lung cancer),
human health effects of many of the chemi-
cals that produce asthma have been readily
identified. Many HAPs are known to pro-
duce asthma in industrial settings, and much
has been learned about these chemicals (asth-
magens) from the occupational experience. In
these settings, exposures can still be difficult
to quantify; nonetheless, causal associations
can be demonstrated more easily because
removal from the occupational setting can
lead to improvement of symptoms.

For example, polyisocyanate-induced
asthma clearly has been attributed to expo-
sure in the workplace. Historically, approxi-
mately 5–10% of all workers exposed to
toluene diisocyanate, other polyisocyanates,
or their monomeric precursors develop
occupational asthma (6). This condition
typically develops after several years of occu-
pational exposure, which indicates a latency
period when exposures are occurring while
subjects are asymptomatic.

In occupational settings, control strategies
are designed to reduce exposure concentra-
tions below threshold limit values (TLVs) and
thereby prevent adverse health effects.
Presently, we often have little quantitative
information for chemicals that have been asso-
ciated qualitatively with occupational asthma.
We do not yet have mathematical models that
predict the relationship between overt signs
and the dose, concentration, and duration of
exposure. Past experience indicates that levels
of exposure that induce asthma vary among
individuals. Nonetheless, current occupational
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Figure 6. The 10 leading states in air emissions of hazardous air pollutants in 1999. Total air emissions are
the sum of fugitive and stack air material release. Fugitive air emissions are material not released through
a confined air stream but released through equipment leaks, through evaporative losses from surface
impoundments and spills, and from building ventilation systems. Stack air (point) source emissions occur
through placement into confined air streams such as stacks, vents, ducts, or pipes. In most states the
stack effluent greatly exceeds the fugitive air release (341).
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standards assume that a threshold dose can
be established at which no additional cases
of asthma will  develop. However, this
assumption may be flawed because initiation
of occupational asthma has been noted
among workers wearing respiratory protec-
tive equipment and when exposures met
existing TLVs (6).

Investigations of airway hyperreactivity in
laboratory animals might provide some
insights into the issue of threshold dose. The
temporal aspects of this relationship seem to
be quite complex, for instance, the induction
of hyperreactivity in guinea pigs exposed
to formaldehyde and acrolein (124). In
these studies, hyperreactivity initially was
assessed by measurement of the dose of
acetylcholine necessary to double pulmonary
resistance after a 2-hr exposure. However, by
extending exposure to 8 hr, an effect greater
than predicted by a dose based on the con-
centration × time results from the 2-hr data
was observed, suggesting that low-level expo-
sure of prolonged duration may have greater
consequences than predicted by acute expo-
sure data. This would explain why some clini-
cal studies with exposures of short duration
(<4 hr) do not uncover effects at levels that
are associated with pulmonary effects in
epidemiologic studies.

Many of the HAPs are respiratory
irritants. Irritants can uncover asthma (possi-
bly among susceptible individuals) by a non-
immunospecific process. Several case histories
have been reported, and have been termed
reactive airways dysfunction syndrome
(RADS) (125). The pathogenesis of this syn-
drome is speculative because exposures are
examined retrospectively. Typically, patients
without pre-existing respiratory complaints
develop airway hyperreactivity shortly after an
accidental exposure or an exposure in an area
with no or poor ventilation. After this single
high-level exposure, hyperreactivity and
abnormal bronchial epithelial biopsies can
persist for a year or longer (up to 12 years).
Causative agents have varied greatly, but all
are respiratory irritants and include chlorine
(126–128), toluene diisocyanate (129–131),
hydrazine (125), sulfur dioxide (132,133),
acetic acid (134), and ammonia (135,136).

One attribute of RADS that differs from
typical occupational asthma is the lack of a
preceding latency period, because it is often
initiated by a single exposure. Evidence sug-
gests that atopy or asthma can predispose
individuals to this syndrome (137). Therefore,
it appears that hidden (symptom-free) asthma
may be uncovered by environmental exposure
to irritants. Persons with this syndrome often
develop severe, progressive airway disease and
subsequently develop responses to a wide
range of agents (nonspecific airway hyper-
reactivity). Workers also report that symptoms

are equivalent at home and at work
(137–142). Because of a lack of exposure
measurements during the initiating events, is it
difficult to establish a threshold for this type of
response; nonetheless, very high exposure levels
are assumed to be responsible for these cases.

Threshold Concentrations That Might
Exacerbate Pre-Existing Asthma
The concentration necessary to produce a
multiphasic diminution of lung function
in persons sensitive to an inhaled compound
can be exquisitely low. A definitive feature of
antigen-induced hypersensitivity is that
effects are observed after exposure below the
concentration that will cause bronchocon-
striction in nonsensitized persons exposed in
an identical manner (e.g., during clinical
experiments). In dermal sensitization, an
allergen is often effective at concentrations
well below those that are irritating to nonsen-
sitized subjects. This situation is well known
among occupational physicians, but epidemi-
ologic data of dose–response relationships
in occupational settings are lacking and lim-
ited to anecdotal case histories. For instance,
an individual with hypersensitivity to an
antibiotic reportedly developed asthmatic
bronchospasm the night after (delayed aller-
gic response) a visit to the town where it was
produced, although this individual never
entered the manufacturing facility. Similarly,
a toluene diisocyanate–sensitive patient was
so reactive that he responded when walking
in the neighborhood of a factory (143).
Another rosin-sensitive worker became reac-
tive to pine trees and even unheated rosins or
turpentine (144). In addition, bronchoprovo-
cation tests have been positive in previously
sensitized workers after exposure to concentra-
tions as low as the current limit of chemical
detection (i.e., 7 pg/m3 toluene diisocyanate)
(145–148). Thus, once hypersensitivity has
been initiated, the dose necessary to elicit sub-
sequent response can be extremely low. In
such cases any level of environmental exposure
can be considered hazardous for these individ-
uals. Thus, it is currently very difficult to
attempt to set threshold doses [no observed
effect levels (NOELs) useful in determining
reference concentrations (Rfcs)] for this
susceptible population.

Exposure Assessment Using
Probability-Based 
Sampling Procedures
Exposure assessment for HAPs is currently
incomplete, but several strategies have been
developed to reduce uncertainty. One
approach is probability-based survey sampling
procedures that combine questionnaires with
multimedia and multipathway monitoring to
estimate total personal exposure (149–153).
An initial study by Whitmore et al. (149)

assessed nonnoccupational exposure to
32 pesticides by monitoring air outside and
inside each home and analyzing drinking
water, food, and dermal routes of exposure.
Ten of the pesticides monitored are on the
HAP listing, and other studies have found
associations between the use of pesticides and
asthma (154–156). In the study, four HAPs
(chlordane, dichlorovos, heptachlor,
propoxur) had greater inhalation than
dietary exposure, with the air concentrations
up to 20 times higher indoors than out-
doors. Based on these estimates of
personal exposure, Whitmore et al. (149)
presented risk assessments for air exposure
assuming a constant exposure over a 70-year
lifetime and reference doses from the
Integrated Risk Information System (IRIS)
(http://www.epa.gov/iris) and other sources.
The estimated inhalation risks were negligi-
ble (i.e., no-cancer-risk estimate was >1 ×
10–6) for all compounds except chlordane,
although the chlorane risk estimate may be
high because of the diminished use of this
pesticide. Because indoor exposure may be
due to past use in the home, considering the
possible risk due solely to outside exposure is
also important. Chlordane levels have been
measured in Jacksonville, Florida, where the
estimated outside air exposure levels equaled
about 22 ng/m3 (compared with 197 ng/m3

indoors), or about 10% of that used in the
above risk assessment estimate (1). Thus,
because exposure to other HAPs also may be
greater indoors than outdoors, accurate
exposure assessment requires detailed analy-
ses that involve total exposure evaluations.
In addition, the Whitmore et al. study ana-
lyzed only two locations, and these findings
may not be readily generalized to other
regions and climates.

Estimates of Indoor Concentrations
In the past the U.S. EPA compiled a database
of concentrations of volatile organic com-
pounds (VOCs) measured indoors (157).
Based on reports from 1979 through 1990,
information was recorded on more than
220 compounds ranging in molecular weight
from 30 to 446 Da. The 10 compounds most
frequently found in reports of poor indoor air
quality included formaldehyde, toluene,
trichlorobenzene, ethylbenzene, 1,4-dichloro-
benzene, acetaldehyde, tetrachloroethylene,
trichloroethylene, benzene, and xylenes.
Thirteen other HAPs most frequently mea-
sured indoors include methylene chloride,
carbon tetrachloride, naphthalene, n-hexanes,
chloroform, 2-butanone, pentachloroben-
zene, styrene, chlorobenzene, trichloroben-
zene, N-nitrosodimethylamine, quinolone,
and hexachlorobenzene. In most incidences,
the odor threshold for each compound
(except formaldehyde) was typically orders of
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magnitude higher than measured values, even
when the lowest odor threshold value is con-
sidered, indicating that human exposure and
complaints frequently occur when the odor is
imperceptible. Complementary to this obser-
vation is the likelihood that olfactory detec-
tion indicates high exposures, because odor
thresholds for many of these compounds are
well above reference exposure guidelines.
Because complaints of malodorous emissions
are common outdoors near point sources, this
comparison suggests that local exposures can
be significant.

An earlier study used a total exposure
assessment methodology (TEAM) (158,159)
to examine numerous compounds, including
20 VOCs in personal air, outdoor air,
expired breath, and drinking water. The
median concentrations in the breath of 10
of the more prevalent compounds ranged
from 0.4 (styrene) to 56.0 (benzene) µg/m3.
This list also included other HAPs
(trichloroethane, xylenes, tetrachloroethylene,
ethylbenzene, dichlorobenzene, chloroform,
trichloroethylene, and carbon tetrachloride).
Personal concentrations vary more among
individuals and often exceed outdoor concen-
trations by a factor of 2 or more in New
Jersey, and by a factor of 5–10 in North
Carolina and North Dakota (1). This sug-
gests that indoor sources or personal activities
are of greater significance than outdoor
sources. In addition, the distributions of the
measurements were skewed, with geometric
standard deviations ranging from 2.5 to 3.5,
which means the range of the concentrations
usually exceeded a factor of 100–1,000.
Proximity to point sources (defined as 1.5
km from a suspected source) was stratified
and had little influence on air or breath mea-
surements. In contrast, personal activities,
including occupation, smoking or living with
a smoker (increasing expired benzene,
styrene, ethylbenzene, and other aromatic
hydrocarbons), filling a gas tank (doubling
expired benzene), and visiting a dry cleaner
or wearing dry-cleaned clothing (increasing
expired trichloroethylene with a half-life of
20 hr), significantly contributed to the levels
of certain compounds measured in expired
breath. An assessment of the source of irri-
tant VOCs in New Jersey resembled that
found for automobile exhaust, gasoline
vapor, or ETS for personal exposures, and
automobile exhaust or gasoline vapors for
outdoor concentrations (159).

Recently, the Centers for Disease Control
and Prevention’s National Center for
Environmental Health presented an estimate
of the U.S. population’s exposure to 27 chem-
icals (determined by measuring compounds or
their metabolites in blood or urine) (160).
Analyses were conducted on data from a por-
tion of the population from the National

Health and Nutrition Examination Survey
(NHANES) for 1999, conducted in 12 loca-
tions across the country. The chemicals
measured included 13 metals (antimony,
barium, beryllium, cadmium, cesium,
cobalt, lead, mercury, molybdenum, plat-
inum, thallium, tungsten, and uranium),
cotinine (a marker of tobacco smoke expo-
sure), and organophosphate pesticide and
phthalate metabolites. Urine metabolites of
pesticides measured included chlorpyrifos,
diazinon, fenthion, malathion, parathion,
disulfoton, phosmet, phorate, temephos,
methyl parathion, and dimethyl-,
dimethylthio-, diethyl-, diethylthio-, and
diethyldithiophosphate. Urine metabolites
of seven monophthalates included benzyl,
butyl, cyclohexyl, ethyl, 2-ethylhexyl,
isononyl, and n-octyl phthalate. Although
this is only an initial database for future
comparison, 1999 serum cotinine levels for
nonsmokers decreased by about 75% from
the levels measured in 1991, indicating a
reduction in exposure of the U.S. popula-
tion to ETS. In addition, more than half of
youths in the NHANES study continue to
have measurable cotinine levels. Likewise,
the population’s exposure to lead decreased
in 1999. These decreases have been observed
for many years dating back to the 1976
NHANES surveys.

In previous investigations of indoor
air quality, Molhave and colleagues
(161–165) measured the concentrations of
total VOCs in older dwellings (200–1,700
µg/m3), which were typically lower than that
in new homes (500–19,000 µg/m3); com-
plaints were more frequent when levels
exceeded 1,700 µg/m3. Excluding carcino-
gens, a mixture of 22 compounds was pre-
pared that included 10 substances most
frequently present in the atmosphere in new
homes and 10 substances in greatest concen-
trations in nonindustrial buildings in which
complaints had been recorded about quality
of the indoor air. The relative amount of each
compound was prepared in proportion to a
single concentration as measured by a flame
ionization detector calibrated with a single
reference compound, toluene. To investigate
whether these compounds influenced pul-
monary functions among persons with
asthma, subjects were exposed for 1.5 hr to
concentrations of 2.5 and 25 mg/m3 total
VOCs (165). The higher concentration,
25 mg/m3, produced mild to moderate bron-
choconstriction (10% decrease in FEV1.0).
Individual responses varied, with bron-
choconstriction more pronounced in individ-
uals with the greatest baseline airway
hyperreactivity. The effect of 2.5 mg/m3 was
not distinguishable from control. Subjective
measures of discomfort (odor and eye,
nose, or throat irritation) first increased

and then diminished during exposure,
suggesting acclimatization, and these
responses were similar in magnitude to those
noted in previous studies with healthy
subjects (163). Using a similar VOCs
mixture, Koren and Delvin (166) also noted
an increase in nasal inflammatory cells
in lavage fluid immediately and 18 hr after
a 4-hr exposure to 25 mg/m3. More recently,
persons with asthma were found to have
decreases in forced expiratory flow rates after
a 4-hr exposure to 50 mg/m3, although this
concentration was without effect in control
subjects (167). These findings are consistent
with reports of symptoms among persons
exposed to VOCs in indoor environments
(168–171). From these studies (161–165),
Molhave has suggested the following guide-
lines in nonindustrial settings: At total VOC
levels of <200 µg/m3, no discomfort from
odor, eye, nose, or throat irritation or
headache is likely, whereas at >3,000 µg/m3,
complaints have occurred in most investi-
gated buildings; at >5,000 µg/m3, objective
measures of upper respiratory tract irritation
increase markedly.

Epidemiologic information on the respi-
ratory effects of environmental VOCs expo-
sure is limited (172,173). A study of
Kanawha Valley, West Virginia, found an
association between exposure and respiratory
symptoms among schoolchildren (third and
fifth graders) (173). The Kanawha Valley was
selected because it contains several chemical-
manufacturing plants within a valley topogra-
phy that can confine atmospheric mixing.
Exposures were categorized by school location
(in or out of the valley and near or far from
an industrial site) and by the sum of the con-
centrations of 5 petroleum-related chemicals
(i.e., benzene, toluene, m,p-xylene, o-xylene,
and decane) or 10 manufacturing process–
related chemicals (i.e., butanol, carbon tetra-
chloride, chloroform, 1,2-dichloroethane, 2-
ethoxyethyl acetate, methyl isobutyl ketone,
mesityl oxide, perchloroethylene, styrene, and
1,1,1-trichloroethane) measured at 74 ele-
mentary schools. The concentrations of
petroleum-related compounds (mean ± SD,
19 ± 22 µg/m3; maximum, 154 µg/m3, with
about half that contributed by toluene) were
higher than the concentrations of manufac-
turing process–related compounds (mean ±
SD, 4.6 ± 1.7 µg/m3; maximum, 13 µg/m3,
with about half that contributed by a mixture
of trichloroethane and chloroform). 

Exposure (measured as concentrations or
proximity to source) was associated with
increased incidence of chronic lower respira-
tory symptoms, and children enrolled
in schools within the valley had higher
rates of doctor-diagnosed asthma. Other
potential confounders (e.g., parental smoking
and familial socioeconomic status) associated
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weakly with health outcomes and proximity
to sites. Adjusting for these variables, the asso-
ciation of chronic airway responses important
to asthma and exposure was still evident.
Although the Kanawha Valley is somewhat
unusual in that it has several chemical manu-
facturing sources, the levels of air pollutants in
this area are not very different from those at
other sites in the United States (105,174).

Several differences exist between the find-
ings from VOCs exposure in the controlled
human experiments and those in the epi-
demiologic Kanawha Valley Health Study.
The most obvious difference is in the concen-
trations producing responses. In the con-
trolled exposure study, no response was
observed at 2,500 µg/m3, whereas lung func-
tion decreased at 25,000 µg/m3. In contrast,
total VOCs concentrations in the Kanawha
Valley were about 25 µg/m3. However, the
populations (adults vs. children), the nature
of the response (acute bronchoconstriction vs.
chronic symptoms and diagnosed asthma),
and the length of exposure (1.5 hr vs. contin-
uous) are different. These findings suggest
that threshold concentrations (lowest concen-
tration at which measurable effects occur)
observed in epidemiologic studies are below
those in clinical studies.

Community exposure to another HAP,
toluene diisocyanate, also has been investi-
gated among individuals living near a
polyurethane foam manufacturing facility
(175). Ambient air sampling near the plant
indicated the presence of toluene diisocyanate.
Ten (9%) of 113 residents examined also had
elevated serum levels of diisocyanate-specific
antibodies (IgE or IgG). Exposure histories of
antibody-positive individuals ruled out occu-
pational exposure or the use of diisocyanate-
containing consumer products, suggesting
that ambient air exposure may be responsible
for the positive antibody responses detected in
some residents of the community. [These
findings are relevant to case reports of indi-
viduals developing symptoms to toluene
diisocyanate after brief exposures (147).]

Health Effects Assessment

Criteria Pollutants and
Mortality/Morbidity

Mounting epidemiologic evidence continues
to associate air pollution with numerous
adverse health effects, including mortality
(cardiopulmonary disease and possibly can-
cer) and morbidity (53,64,66,72,83,95,
172,174,176–190). Altered respiratory symp-
toms (e.g., chest tightness, coughing, short-
ness of breath, wheezing), altered pulmonary
function (e.g., FEV1.0 or PEFR diminutions),
bronchodilator usage, school or work
absence, and hospital admissions for asthma
increase in association with exposures to air

pollution. Although local sources are difficult
to evaluate rigorously, and long-range trans-
port is recognized to influence ambient con-
centrations, local sources can augment adverse
effects. For example, the Harvard Six-Cities
study found higher mortality in Steubenville,
Ohio, and St. Louis, Missouri, locations
where the air quality is influenced more by
regional stationary sources mixed with long-
range transport processes, than in Watertown,
Massachusetts, or Kingston/Harriman,
Tennessee, locations influenced almost solely
by long-range transport processes (83,183).
These and several other epidemiologic studies
have focused on criteria pollutants, with the
strongest associations often observed with fine
particulate matter.

Because air pollution is a complex mix-
ture, several investigators have postulated
that any single exposure variable cannot
be solely responsible for observed adverse
effects (83,104,178–181). Thus, measure-
ments of criteria pollutants also may serve as
exposure surrogates for a complex mixture
of criteria pollutants mixed with regional
HAPs. Detailed chemical analyses of particu-
late matter vary significantly from location to
location, and data are limited (100,104,
191,192). Typical analyses of particles in the
2.5- to 10-µm fraction are dominated by re-
entrained road dust (containing soil particles,
engine oil, metals, tire particles, sulfates and
nitrates) and construction and wind-blown
dusts (mostly soil particles). At or below 2.5
µm, the chemical signatures are primarily
generated by products from combustion,
condensation, and coagulation of gases and
ultrafine particles produced by traffic, coal
combustion, and metal, oil, and chemical
manufacturing (70,95).

ETS, HAPs, and Asthma
Children with mothers who smoke experi-
ence increased severity and frequency (addi-
tional episodes) of asthma episodes and
diminished lung function, even at low doses
(193–205). ETS is a mixture of exhaled
mainstream and sidestream smoke consisting
of over 4,000 chemicals. ETS contains sev-
eral human respiratory carcinogens (includ-
ing benzo[a]pyrene, benz[a]anthracene,
other polycyclic aromatic hydrocarbons,
4-aminobiphenyl, and nitrosadimethylamine
and irritants (including formaldehyde,
acrolein, other aldehydes, cadmium, and
other metals) (196). Twenty-nine of the 49
major components in ETS are HAPs (1).

Indoor PM2.5 levels are typically elevated
by 2–5 µg/m3 per cigarette smoked (194–196).
Background indoor PM2.5 levels vary depend-
ing on other indoor aerosol sources and the
amount of penetration of the ambient aerosol
[often substantial (50–80%) for particles in
this size range], and typically are 15 µg/m3

(1,100). Smoking can produce PM2.5 levels
of about 40 µg/m3 (ranging from 18 to 95
µg/m3) (196,206,207). Asthma among chil-
dren has been noted when mothers smoke 10
or more cigarettes per day (208,209).
Applying the relationship between cigarettes
smoked and PM2.5 developed by Leaderer et
al. (196), 10 cigarettes could generate
an atmosphere containing 20–50 µg/m3

PM2.5 above background and result in total
exposures of approximately 35–65 µg/m3.
Exposures in this range have been estimated
to induce 8,000–26,000 new cases of asthma
annually (based on estimates of maternal
smoking). Exposures to HAPs when mixed
with particulate load in this range could
adversely affect persons with asthma.

Another study supporting the relationship
between ETS generated by mothers and res-
piratory symptoms (wheeze, etc.) associated
with childhood asthma indicated that symp-
toms increase with the amount of maternal
smoking (210). Again, the threshold level of
smoking for adverse responses was at rela-
tively low exposures of 1–4 or 5–14 cigarettes
per day. Applying the estimates of PM2.5 pro-
duced by this level of smoking (196), an
additional 2–20 µg/m3 or 17–35 µg/m3,
respectively, would be added to background
levels. A study of higher levels of smoking
reported that exposures to >20 cigarettes/day
(or 40–100 µg/m3) produces 3.6 times more
bronchial hyperreactivity, a characteristic sign
of asthma (211).

Because maternal smoking has a greater
effect than paternal smoking, it also may
influence asthma in utero by limiting lung
development (197–205,212–214). In addi-
tion, average concentrations of room air
samples may underpredict the levels in a
child’s breathing zone because mothers often
hold their small children. This proximity
could result in complex exposure patterns of
intermittent high-level exposures of short
duration. Conversely, older children spend
less time at home or in a room with a parent
who smokes. Exposure patterns to HAPs
also may be intermittent, with wide vari-
ances in concentration. Time–activity infor-
mation would be useful in predicting
individual exposures by combining micro-
environmental concentration information
with duration of exposure obtained from
time–activity analyses.

Although combustion is a major source of
compounds in both ETS and HAP, the physi-
cal and chemical properties of ETS differ from
those of the ambient mixture of gaseous and
particulate HAPs. HAPs account for most of
the toxicity of ETS because most respiratory
irritants that are contained in ETS are HAPs
(Table 4). The levels of HAPs present in ETS
are greater than in urban air, however. The
particle size also may differ: particles in freshly
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generated ETS are <1.0 µm [sidestream smoke
particles are typically 0.001–1.0 µm, and
mainstream smoke particles are 0.1–1.0 µm
in diameter (215)], whereas the cutoff diam-
eter of ambient aerosol containing HAPs is
2.5 µm (PM2.5). Besides mass concentration
(i.e., µg/m3), certain aspects of particulate
toxicity depend on the particle number and
surface area (216–218). Because mass
depends on particle volume, small increases
in diameter in this range can have large
influences on the reduction in number of
particles. Thus, particles between 1.0 and
2.5 µm add greatly to the mass estimates of
HAPs in air. Nonetheless, ambient PM2.5
concentrations of 11 and 30 µg/m3 and
PM10 of 18 and 47 µg/m3 have been associ-
ated with increases in cardiovascular and
respiratory disease (83–85,219–222).

Evaluating Human Exposure and Its
Relationship to Asthma
Induced airflow obstruction (decreased expi-
ratory flow and reversed by adrenergic ther-
apy) after direct exposure in a clinical setting
is an operational method to detect occupa-
tional asthma (6,143,223). Common asthma-
gens identifiable by this method include
metals such as cadmium (224,225),
chromium (226,229), cobalt (230–233), and
nickel (234–239) compounds. This method
is aided by knowledge of the chemicals pre-
sent in the workplace and the reversal of
symptoms upon removal from the workplace.
However, this approach is impractical
to completely evaluate 189 compounds.

An asthmagen can be defined as a com-
pound that evokes asthma symptoms through
immunologic mechanisms and has docu-
mented case reports in the medical literature
associating exposure with asthma (an inducer
of asthma). Table 5 lists HAPs that fit this
definition, including several anhydrides,

isocyanates, metals, and inorganic and
organic compounds. The threshold concen-
tration needed to produce bronchospasms
can be below that necessary to induce (non-
immunospecific) irritation, and thus
immunologic mechanisms are suspected. This
often involves the development of specific
immunoglobulins (e.g., specific IgE) that can
be confirmed by skin prick tests or lympho-
cyte expansion assays.

Although several occupational asthma-
gens have been identified through their
immunologic mechanism, this is not always
the case. Therefore, compounds that do not
produce full antibody-mediated responses
should be excluded cautiously. For this rea-
son, Table 5 also includes several compounds
that lack clear evidence of a specific immuno-
logic response (i.e., identification of specific
IgE) but have been associated with occupa-
tional asthma. These compounds can be con-
sidered exacerbators of asthma. Other
members of this list are substances (acting
like sulfur dioxide and perhaps ozone) that
may not produce antigenic responses but still
provoke bronchoconstriction in persons
with asthma at concentrations that are
lower than those that are bronchoconstrictive
in healthy subjects. These chemicals act as
irritants and induce airway epithelial injury
and inflammation, effects that can be barely
perceived at doses in the range occurring in
ambient environments. Released from sta-
tionary sources, such HAPs can mix with
other toxic chemicals in the urban air or may

add to the irritant load indirectly through
photochemical processes to contribute to the
total irritant load of ambient air.

Insufficient scientific data exist to evaluate
the immunologic potential of many of the
compounds of interest. In addition, limiting
the definition of asthma to antigenic
responses is difficult, and several chemicals
have not been clinically tested to determine
whether they can cause or exacerbate asthma
(240–245). Therefore, an assessment of the
toxicity of these compounds must also
include consideration of the chemical proper-
ties of HAPs. Properties important to this
question included those chemical and physi-
cal attributes that influence airway dosimetry
(respirability), irritancy, and reactivity with
biological macromolecules. Based on these
attributes, several additional compounds con-
tained on the list of 189 HAPs could be sus-
pected of exacerbating asthma, but it is
unclear whether they can induce persistent
asthma (Table 6). Respiratory irritants
with wide-scale usage in this list include
hydrogen fluoride, hydrogen sulfide, phos-
gene, and phosphene. These compounds are
known irritants to the respiratory tract and in
some cases have been responsible for commu-
nity air pollution episodes involving acciden-
tal emissions (e.g., rail car derailments).

Adding to the difficulty of this evaluation
are the uncertainties created by the gaps in
the literature regarding the human toxicity
of each compound. Nonetheless, the
limited human experience must be considered
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Table 4. Concentration of hazardous air pollutants
found in mainstream cigarette smoke (195).

>100 µg/cigarette in mainstream smoke
Acetaldehydea Methyl chloride
Catechol Phenol
Hydroquinone Toluene

100 > x > 10 µg/cigarette
Acroleina Formaldehydea

Benzenea Propionaldehyde
1,3-Butadienea Quinolinea

Carbonyl sulfide Styrene
Cresols

<10 µg/cigarette
4-Aminobiphenyl N-Nitrosodiethanolamine
Aniline N-Nitrosodimethylamine
Cadmiuma Polonium-210
Chromiuma Polycylic aromatic hydrocarbonsa

Dioxinsa Benz[a]anthracene
Hydrazinea Benzo[a]pyrene
Nickela 2-Toluidine

aCompounds listed as hazardous air pollutants.

Table 5. Hazardous air pollutants that can exacerbate or induce asthma. 

Chemical class Compounda Reference

Aldehydes Acetaldehydeb (33,343,344)
Acroleinb (124,343,389–394)
Formaldehydeb (124,169,343,395–403)
Propionaldehyde (395,398)

Anhydrides Maleic anhydride (404,405)
Phthalic anhydride (405–408)

Isocyanates Hexamethylene-1,6-diisocyanate (146,409–411)
Methylene diphenyl diisocyanate (277,412–415)
Methyl isocyanate (146,416–421)
Toluene diisocyanate (129–131,143,145–148,175,306,307,422) 

Metals Cadmium compoundsb (217,224,225,346)
Chromium compoundsb (226–229,235,239,350)
Cobalt compounds (230–233,350)
Manganese compoundsb (223,423–425)
Nickel compoundsb (234–239,337,426–433)

Other compounds Carbaryl (434–436)
Chlorine (126–128,437–448)
Coke oven emissionsb (449–451)
Diazomethane (452)
Diethanolamine (453,454)
Ethylene imine (aziridine) (455,456)
Ethylene oxideb (457–459)
Hydrochloric acid (460–465)
Methyl methylacrylate (466–468)
Styrene (334–336)

aCompounds in italics have case reports of occupational asthma resulting from exposure (inducers); nonitalic compounds
are irritants that can augment symptoms in persons with asthma (exacerbators). bCompounds on list of 33 hazardous air
pollutants of greatest concern (Table 1).



in developing logical strategies to assess possible
links between environmental exposure to
these compounds and asthma. This second
group of compounds suspected of exacerbat-
ing asthma includes skin allergens (com-
pounds producing allergic contact dermatitis)
with chemical properties that suggest inhala-
tion as a route of exposure (246,247).

In addition, other compounds known to
react covalently with proteins or DNA include
polycyclic aromatics/aryl epoxides, bis-
chloromethyl methyl ether, dimethyl carbonyl
chloride, dimethyl sulfate, and β-propiolac-
tone. These compounds can act directly by
forming specific immunoglobulin complexes
or indirectly by forming haptens or other anti-
genic determinants to produce adverse
responses in the airways (248–250).
Carcinogenic compounds can cause irritation
and inflammation at sites of exposure and are
often antigenic (251–259). Respiratory car-
cinogens (or suspected carcinogens) include
antimony compounds (260–263), arsenic
compounds (263–268), hexamethylphospho-
ramide (269,270), 4,4´-methylene-bis(2-
chloroaniline) (271,272), bromoform
(273,274), methylene chloride (275), 4,4´-
methylenedianiline (276,277), nitrobenzene
(mice) (278–280), 4-nitrobiphenyl (281), 2-
nitropropane (282–285), N-nitroso-N-
methylurea (286), N-nitrosodimethylamine
(287–290), N-nitrosomorpholine (291–293),
pentachlorophenol (mice) (294,295), poly-
cyclic aromatic hydrocarbons (250,254,255),
1,3-propane sultone (296,297), propylene
oxide (298–300), 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) (301–305), 2,4-toluene
diamine (306,307), vinyl acetate (308,309),
vinyl chloride (310–317), and vinylidene
chloride (311,318–321). Unlike the com-
pounds in Table 5 that are known to induce
asthma in occupational settings, several of
these suspected carcinogens (e.g., bromoform,
4,4´-methylenedianiline, pentachlorophenol
propylene oxide, vinyl acetate) only have

evidence in laboratory animal studies.
Interestingly, some of these compounds
induce skin irritation or sensitization (e.g.,
dimethylbenz[a]anthracene, 4,4´-methylene-
dianiline, and TCDD). Relevant to this rela-
tionship are the associations of DEPs with
augmented sensitization and airway respon-
siveness (32,34–40) and possibly lung tumors,
noted only in rats (322–332). In addition,
toluene diamine is a metabolite of toluene
diisocyanate (307), a potent asthmagen, and
thereby links, in principal, reactive intermedi-
ates of carcinogens with asthma. However,
carcinogens may also be immune suppressive
(254,333), so this relationship is likely to be
complex (specific for dose and compound)
and must be viewed with caution.

The VOCs listed in Tables 5 and 6 are
limited to aldehydes, benzene, and styrene
(334–336). Benzene is included because it has
been associated with asthma exacerbation
(although the major concern with this com-
pound is carcinogenesis). In the ambient
atmosphere, benzene levels may indicate prox-
imity to traffic and thereby indicate exposure
to mobile source emissions. As noted above,
VOCs have been associated with increased
asthma symptoms in controlled human studies
(157–168) and epidemiologic studies
(169–171,173). However, because these stud-
ies measured exposures to mixtures and
because many of the compounds listed have
not been associated with asthma or other respi-
ratory effects, these compounds have not been
included in this tentative list. Additional inves-
tigations of human exposures to these com-
pounds separately and as mixtures are needed
and are likely to yield additional insights into
their possible role in inducing asthma. The lit-
erature review of other HAPs listed in Table 1
suggests that they may be of lesser concern.

These compounds also may contribute (partic-
ularly as mixtures) to other serious health out-
comes, and therefore including compounds
for more immediate consideration should
be based on these effects (e.g., 1,3-butadiene).

Estimates of the Magnitude 
of Asthmagens Release
Human exposure must be considered in eval-
uating the role of HAPs in asthma. Because
air sampling is not routinely performed on
each of these compounds, the lack of scientific
information suggests caution. One approach is
to consider the extent of occupational expo-
sure as an indication of possible sources of
emissions. Recently, Seta and co-workers
(337) estimated that over 6 million workers
are potentially exposed to chemical or metal
asthmagens at industrial settings throughout
the United States. (Potential exposure to poly-
isocyanates alone exceeded 110,000 workers.)
These estimates have been supported by addi-
tional studies (338,339). Similarly, an esti-
mated 720,000 people live near (<12.5 miles)
primary nickel-emitting sources producing
median ambient concentrations of 0.2 µg
Ni/m3, and 160 million people residing near
nickel sources are estimated to receive median
concentrations of 0.05 µg Ni/m3 (340). At a
minimum, this suggests that several emission
sources can potentially contribute to commu-
nity air pollution. Information on the level of
current individual exposures of persons with
asthma or the potential to develop asthma is
limited and requires additional studies.

Another approach to estimate possible
exposures is to consider the toxic (emis-
sions) release inventories compiled annu-
ally by the U.S. EPA (341,342). Table 7
lists release inventories of compounds
thought to have a role of inducing asthma.
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Table 6. Other hazardous air pollutants suspected
of being respiratory tract irritants that may exacer-
bate asthma.

Compound Reference

Benzene (158,159,469–473)
Caprolactam (474–476)
bis-Chloromethyl methyl ether (477–479)
1,2-Dibromo-3-chloropropane (480)
Dibutyl phthalate (481–484)
Dimethyl sulfate (485–487)
Hydrazinea (488–490)
Hydrogen fluoride (463,491–493)
Hydrogen sulfide (494–499)
Mercury and compoundsa (500–508)
Phosgene (509–511)
Phosphine (512,513)
Trichlorophenol (514)
aCompounds on list of 33 hazardous air pollutants of great-
est concern (Table 1).

Table 7. Release inventory of Hazardous air pollutants that induce asthma. Compounds are listed in order
of release into air, from 1999 toxics release inventory.a

No. of Total release Total air release Change
Compound Facilities (thousand pounds) (thousand pounds) since 1995

Styrene 1,637 57,516 54,744 Increase
Chlorine 1,234 50,037 49,371 Decrease
Methyl methylacrylate 309 5,016 4,367 New
Nickel compoundsb 1,373 70,334 1,191 Increase
Chromium compoundsb 1,774 174,487 748 Increase
Ethylene oxideb 148 558 483 New
Maleic anhydride 374 451 379 Decrease
Diethanolamine 414 1,116 374 New
Diisocyanate 1,373 2,280 355 New
Phthalic anhydride 159 3,245 277 Decrease
Cobalt compounds 440 16,427 79 Increase
Toluene diisocyanate 183 74 35 Decrease
Ethylene imine (aziridine) 3 163 10 New
Diazomethane — > 1 > 1 New
Methyl isocyanate 5 > 1 > 1 Decrease
Coke oven emissionsb — — — New
Subtotal (listed compounds) 3,295 245,379 2,422 —
Total 9,426 381,705 112,414 —
aData from U.S. EPA (341). bCompounds on list of 33 hazardous air pollutants of greatest concern (Table 1). 



Each value listed under “total air release” is
the sum of  fugit ive  a ir  and stack a ir
releases. It does not include estimates of
transport across media or other pathways
that might result in inhalation exposures in
the ambient air. Styrene, chlorine, methyl
methylacrylate, and nickel and chromium
compounds are among the chemicals with
the greatest number of reporting sources
and with the greatest amount of release.

Table 8 lists air release inventories for
other HAPs that are mostly likely to exacer-
bate rather than induce asthma. The highest
levels of release are reported for hydrochloric
acid, formaldehyde, acetaldehyde, and man-
ganese compounds—and to a lesser extent,
acrolein. Acrolein is a potent respiratory
tract irritant and, as for nickel compounds,
emission inventories have increased slightly
over time (Figure 7). In addition, the esti-
mated release of most respiratory carcino-
gens that are suspected of influencing
asthma is low. An exception is the release of
polycyclic aromatic hydrocarbons that has
been included since 1995 and from 1995 to
1999 increased from 434 to 1,339 thousand
pounds (total air emissions). Accurately
assessing the amount of polycyclic aromatic
hydrocarbon is also difficult because a large
portion is produced by combustion from
mobile sources.

Emission inventories are, at best, only
qualitative and may serve as indications of
the magnitude of point sources. These esti-
mates have not been validated by air sam-
pling near point sources, and some airshed
models using release inventories may under-
estimate the actual measured concentrations
downwind from stationary sources. Any
estimate of temporal increases or decreases
has uncertainty because the number of
reporting industries, the covered industry
groups, and reporting requirements are not
constant from year to year. For example,
electrical utilities did not report total air
emissions for nickel compounds before
1998. In 1999, electric utilities are a sub-
stantial source of nickel compound and
released 718 thousand pounds, which is 1.5
times that of other sources combined
(including chemical, 24; fabricated metal,
50; and primary metals,  82 thousand
pounds) (Figure 8). Nonetheless, the large
number of possible point sources indicates
that extensive human exposure is possible.

In addition, predictions of ambient release
and resulting exposure concentrations require
applications of air quality dispersion models to
chemical-specific data. Whether inventory
data have enough fidelity for such applications
is unclear. Nonetheless, models can be devel-
oped and estimates of noncancer risk using
Rfcs can be determined. An important gap in
the literature is whether cumulative effects
result from multiple acute exposures at high
levels, not reflected by these inventories.
Release inventories present only estimates of
annual averages and therefore lack detail for
modeling elevated acute exposures.

Estimated Exposure Guidelines
Concentration guidelines for occupational
and nonoccupational exposure have been
developed by a number of agencies, including
the American Conference of Governmental
Industrial Hygienists (ACGIH), the U.S.
EPA, and the California Environmental
Protection Agency. Often, the assessment of
nonoccupational exposure uses the current
ACGIH TLVs for time-weighted averages
for occupational exposures for a normal 8-hr
workday and a 40-hr work week, to which
nearly all workers can be repeatedly exposed
day after day without adverse effects (345).
Bronchoprovocation challenges typically
start at these concentrations, and occupa-
tional asthma is often defined by a decrease
in lung function occurring at or below these
values. Robinson and Paxman (346) esti-
mated that cancer risks at the median TLV-
based ambient air guidelines exceed 1,000
cases per million exposed persons for cad-
mium (1,040), nickel and compounds
(1,420), propylene oxide (1,550), coke oven
emissions (1,860), benzene (2,500), and
arsenic and its compounds (7,300). These
investigators noted that TLVs are not
designed to represent NOELs for regulatory
purposes. Consequently, TLVs are unlikely
to provide an adequate margin of safety for
the general population.

Other attempts to design standards
include the ambient air level goals developed
by Calabrese and Kenyon (347). They calcu-
lated levels using NOELs or lowest observed
effect levels corrected for lifetime exposure
and divided by appropriate multiplicative
uncertainty factors (as much as 1,000 over
the NOEL). Using animal toxicity data,
adjustments were made for the equivalent
human breaching rates using species-specific
equations and absorption factors.

The most commonly used values for
noncancer risk assessment are the current
U.S. EPA Rfcs (http://www.epa.gov/ttn/atw/).
These values do not consider the possibility
of induction or exacerbation of asthma
specifically as a basis for chronic (noncancer)
NOEL. Instead, each Rfc for most of these
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Table 8. Release inventory of hazardous air pollutants suspected of exacerbating asthma.a

No. of Total release Total air release Change 
Compound facilities (thousand pounds) (thousand pounds) since 1995

Hydrochloric acid 1,497 668,696 666,193 New
Formaldehydeb 849 24142 12,409 Increase
Acetaldehydeb 283 12,942 11,944 Increase
Manganese compoundsb 1,662 523,514 2,459 New
Propionaldehyde 27 542 426 Decrease
Acroleinb 29 377 204 Increase
Cadmium compoundsb 127 12,086 49 Decrease
Hydrazineb 62 143 10 Decrease
Carbaryl 18 67 5
Subtotal (listed compounds) 3,012 573,204 27,075 —
Total 4,544 1,242,509 693,699 —
aData from U.S. EPA (341). bCompounds on list of 33 hazardous air pollutants of greatest concern (Table 1).

Year
1995 1996 1997 1998 1999

0

100

200

300

400

500

To
ta

l a
ir

 e
m

is
si

on
s 

(th
ou

sa
nd

 p
ou

nd
s)

Nickel compounds
Acrolein

Figure 7. Trends in annual total air emissions
release of nickel compounds and acrolein, which
can either induce or exacerbate asthma and have
been associated with estimated noncancer risks in
the general population (341).
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Figure 8. Trends in annual total air emissions
release of nickel compounds for various industries.
The total air emissions are the sum of fugitive and
stack air emissions. In 1995, the larger sources
included chemical, fabricating (Fab) metal, and pri-
mary metal industries (these industries combined =
Total). The inventory total increased for 1999, using
the same industry reporting as for 1995. In addition,
starting in 1998, the emissions from electrical utili-
ties were also included in nickel compound air
releases, and in 1999 they exceeded the total of all
other sources combined.



compounds is selected primarily by the
estimates of respiratory irritation. For example,
formaldehyde’s values are based on the data
obtained on irritation, and not on the poten-
tial to induce asthma (http://www.epa.gov/
ttnatw01/urban/natpapp.pdf). Because the
diagnosis of occupational asthma involves
pulmonary responses that are reported at or
below the TLV, exacerbation of asthma can
occur at doses of these compounds below
those that induce irritation. Therefore, the
TLV and NOEL do not always account for
the exacerbation of existing asthma.
Inasmuch as sensitization is more relevant
when considering safeguarding a heteroge-
neous general population compared with an
occupational population, these exposure
guidelines should be considered tentative
until further information can be obtained on
the relationship between levels that produce
irritation and asthma in industrial settings,
and asthma in the nonoccupational settings.

Table 9 presents the current reference
exposure levels (RELs) developed for
California for certain HAPs (348,349).
Exposure to each substance independently at
or below these values is not expected
to result in adverse (noncancer) health
effects after estimated 1-hr maximum con-
centrations (acute) or annual average
(chronic) for inhalation. To compare these
values with the cancer unit risk, the
latter must be multiplied by an exposure
estimate (concentration × number of per-
sons exposed). A major difference between
these two values is that cancer unit risks are
derived by linear extrapolation, assuming no
threshold. In contrast, RELs assume a
threshold (based on the NOEL presented by
IRIS and other sources). One way to com-
pare these values is to assume lifetime expo-
sure of one million people to a
concentration (in µg/m3) equal to the cancer
unit risk. For example, if a community
of one million is exposed to 2.7 µg/m3

acetaldehyde, control actions are recom-
mended based on a cancer risk (rather than

based on the chronic REL, which is 9.0
µg/m3). Similarly, styrene exposures are lim-
ited more by the estimates for cancer risk
than by the chronic REL. For many HAPs
that have both a cancer unit risk and a
chronic REL value (including acrolein,
formaldehyde, nickel, and toluene diiso-
cyanate), exposure is to be limited based
more on the chronic noncancer effects.

Recently, Morello-Frosch and colleagues
(350) modeled outdoor concentration esti-
mates from the U.S. EPA’s 1990 release
inventories to characterize air toxics in
California. Concentration estimates were
used with chronic toxicity data to estimate
cancer and noncancer hazards for individual
compounds. Morello-Frosch et al. estimated
8,600 excess lifetime cancer cases, 70% of
which were attributable to four pollutants:
polycyclic organic matter, 1,3-butadiene,
formaldehyde, and benzene. For noncancer
effects, they estimated a total hazard index
across census tracts and found that the great-
est effects were primarily due to acrolein and
chromium concentration estimates. However,
the 1990 data are lower than the 1999 release
inventories for these compounds. In addition,
formaldehyde, methylene diphenyl diiso-
cyanate, magnesium, cobalt, acetaldehyde,
and hydrochloric acid contributed to the
noncancer risk. Most of the estimated risk
involved releases from area and mobile source
emissions, although several locations in the
state have point sources that account for a
large portion of estimated concentrations and
health risks. In addition, a similar estimate of
a noncancer hazard index was derived for the
Environmental Defense Fund National
Scorecard (Table 10). Many of the same
compounds, including acrolein, formalde-
hyde, and nickel and chromium compounds,
were identified, and estimates of the number
of individuals possibly exposed at or above
these levels were obtained.

Future Research Priorities

Exposure Assessment Research Needs

Since our initial review of these issues in 1995
(1), a number of studies have begun to esti-
mate the levels of human exposure. A recent
Gaussian air dispersion modeling study con-
ducted by Rosenbaum et al. (351) used the
Assessment System for Population Exposure
Nationwide database to assess the spatial dis-
tribution of concentrations of HAPs. Ratios of
median concentrations based on 1990 emis-
sion source estimates for 148 compounds sug-
gest that emission totals that do not consider
emission source type could be misleading, and
model performance suggested a tendency to
underpredict observed concentrations.
Overall, Rosenbaum et al. concluded that
emissions estimates for HAPs have a high
degree of uncertainty and contribute to dis-
crepancies between modeled and monitored
concentration estimates. Similarly, Kyle et al.
(352) compared the air release inventories
with monitoring data in California. They also
concluded that release inventories tend to
underestimate exposure and that current mon-
itoring methods do not have sufficient sensi-
tivity to fully assess the health significance of
exposure to HAPs and made several useful
recommendations to fill current data gaps. 

Release inventories still need further vali-
dation by additional environmental sampling
(351–357). Better monitoring methods and
models are needed to estimate the risk these
compounds may pose. In addition, future sci-
entific investigations are needed to evaluate
the indoor and personal exposure levels of
HAPs because an unsettled issue specific for
these compounds is the relative extent of
indoor exposure. Because these compounds
are in ETS, involuntary exposures are likely
to be frequent. Aldehydes have several other
indoor sources, including wood fires, cigarette
smoke, and release from building materials,
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Table 9 .  California Environmental Protection
Agency chronic inhalation REL.a

Compound REL (µg/m3)

Acetaldehyde 9.0
Acrolein 0.02
Benzene 60
Chlorine 0.2
Dioxins 0.00004
Formaldehyde 3.0
Hydrogen chloride 9.0
Mercury compounds 0.09
Nickel compounds 0.05
Styrene 700
Toluene diisocyanate 0.095
aData from http://www.oehha.ca.gov/air/chronic_rels/pdf/
relsP32k.pdf.

Table 10. Chemicals contributing to noncancer hazard index derived from the Environmental Defense Fund
National Scorecard.a

Compounds Chemical hazard index Cumulative hazard index Population in areas

Acrolein 1.800 61% 175,358,109
Formaldehyde 0.410 14% 11,896,327
Diesel emissions 0.400 13% 11,635,229
Acetaldehyde 0.082 3% 311,276
Nickel 0.040 1% 231,063
Beryllium 0.036 1% 985,448
Chromium 0.029 1% 190,869
Benzene 0.023 1% 21
aData from http://www.scorecard.org/env-releases/def/hap_background.html.
Definitions: chemical hazard index = the estimated concentration of a compound divided by its Reference Concentration
based on a noncancer risk estimate model (may be useful for ranking purposes but are not necessarily predictive of any
actual individual’s risk of a specific outcome). Cumulative hazard index = the hazard index obtained by summing all UATs
with noncancer effects in an area. Each UAT contributes its single chemical hazard index to the total. Environmental
Defense’s Scorecard calculates a cumulative index across all health effects, and also effect-specific hazard indices (for
respiratory, immuno-, neurotoxicity, etc.). Population in areas = the number of people living in census tracts where com-
pound’s estimated concentration exceeds its reference concentration (hazard index is greater than one). This is an esti-
mate of number of people exposed to levels of HAPs that exceed the Clean Air Act’s noncancer risk goal.



personal care products, and clothing
(343,358). Initially, field investigations could
assess outdoor, indoor, and personal expo-
sures to aldehyde and metal asthmagens using
probability-based sampling. Measurements of
the magnitude of peak concentrations and
collection of ambient air samples should, if
possible, include various sample times,
an exposure aspect that is important in the
induction of asthma. Last, this group of com-
pounds is ideal for future investigation
of fugacity models, and knowing the amount
of transport across media for these com-
pounds, particularly the less volatile organic
compounds, would be helpful (359–361).

Health Effects Assessment 
Research Needs
Because these compounds are highly toxic
and in some cases carcinogenic, further
human clinical testing is unlikely.
Consequently, tests with laboratory animals
and in vitro toxicology testing with human
cell culture systems may be acceptable alter-
natives. End points important to airway
inflammation (e.g., cytokine and eicosanoid
production) should be examined to gather
dose–response information. Currently, the
development of cDNA microarrays for global
assessment of gene expression is very promis-
ing and may enable signature response pat-
terns to be evaluated (429). These end points
can readily be investigated in laboratory ani-
mals. Unfortunately, animal models of
asthma have limitations, with most previous
investigations focusing on acute, reversible
airway hyperreactivity instead of persistent
chemically induced asthma. Although small
rodents (mice in particular) have advantages
for measurement of genetic and molecular
end points (e.g., genomewide scans and
microarray detection of mRNA), these species
are often less responsive than humans and
tests of lung functions are difficult to perform
in mice. Larger laboratory species (e.g.,
guinea pigs), in contrast, have disadvantages
in that molecular end points are harder to
measure (requiring gene cloning to generate
riboprobes for this species) but are useful for
evaluation of airway bronchoconstriction and
hyperreactivity. Nonetheless, the effects of
chronic inhalation exposure to the HAPs and
the induction of persistent hyperreactivity are
worthy of future investigations. In addition,
information is needed on the dose related to
continuation of a persistent syndrome in ani-
mals that already have hyperreactivity.
Animal data on the effects of complex mix-
tures, including exposure to two or more
HAPs, HAPs with particulate matter, or
HAPs with criteria pollutants also could be
investigated with animals.

Dose–response data would be helpful to
evaluate a current assumption made in risk

assessment that the effect of each substance is
additive for a given organ system. This
assumption is contradicted by studies with
respiratory irritants that suggest synergy can
occur (e.g., acid sulfates and sulfur dioxide
with metal aerosols) (362,363). Currently,
ambient air quality standards are based largely
on data obtained when each criteria pollutant
is tested independently. Indeed, concerns
about exceedences are based on the expected
adverse effects of the pollutant in highest con-
centration (often ozone) without concern
about co-exposure to other irritant pollutants
present in the typical oxidant urban plume.
For example, urban concentrations of aldehy-
des and other VOCs follow diurnal patterns
and have peaks about 50 µg/m3 (171). These
exposures can occur with subsequent high
ozone exposures (>250 µg/m3), and recent
epidemiologic studies tentatively suggest that
pollution interactions may potentiate respira-
tory responses (177). (Note that formalde-
hyde, acetaldehyde, and acrolein exposures
often occur together in concentrations that
exceed the REL values presented in Table 9.)

The number of persons living near emit-
ting point sources is unknown but could be
derived from census data and information on
the location of point sources throughout the
United States. Furthermore, the percentage
of persons in these populations that have
asthma can be estimated based on NHANES
survey data. Estimating the extent of expo-
sure to these identifiable asthmagens could
be useful, particularly in assessments
of healthcare costs (178).

Benchmark concentrations are based on
standard toxicologic references and represent
HAP toxic levels above which health risks may
occur. Outdoor concentrations of HAPs need
to be compared with defined benchmark con-
centrations for noncancer health effects that
include asthma. In addition, continuous air
sampling needs to be conducted on a few
HAPs that have exceeded health benchmark
values at one or more sites by modeling, mon-
itoring, or both (including acrolein, arsenic,
benzene, 1,3-butadiene, carbon tetrachloride,
chromium, chloroform, ethylene dibromide,
formaldehyde, and nickel). Noncancer risk
estimate should also be apportioned by source,
with emphasis on mobile, area, and point
sources and background.

The current epidemiologic information
on the possible associations between HAPs
and asthma is inadequate. Recent studies with
criteria pollutants suggest that animal and
clinical exposure data can underestimate res-
piratory health effects. One epidemiologic
study of formaldehyde suggests that
children exposed in homes with concentra-
tions of >150 µg/m3 had a higher frequency
of asthma and bronchitis than children
with residential exposure of <50 µg/m3 (179).

Decrements in lung function (i.e., peak
expiratory flow) were also associated with
formaldehyde exposure. Clinical studies with-
formaldehyde, in contrast, require much
higher concentrations to produce transient
increases in airway resistance (171). This sug-
gests that persistent respiratory effects can
result from indoor formaldehyde exposures
and that environmental exposures produce
effects not observed in clinical studies with
short-term exposures. Confirmation through
additional investigation of the effects of envi-
ronmental aldehyde and other HAP expo-
sures on persistent pulmonary function is
thus warranted. The contribution of HAPs as
constituents of PM2.5 is extremely important
and will require detailed speciation of the
chemical constituents of ambient samples.

Conclusions

Asthma is a serious illness with a high preva-
lence among the general population. Since
the last review in 1995, the incidence and
severity of asthma have remained high.
Exposure to current levels of air pollution has
been associated with an increase in respira-
tory symptoms and hospital admissions for
asthma. Environmental agents associated
with asthma include ambient particulate
matter and ETS; both are complex
mixtures containing many HAPs.

The role of HAPs in this condition (with
and relative to other known hazardous com-
pounds in air pollution) has yet to be
explored thoroughly. Nonetheless, there is
good reason to think that certain compounds
may be etiologic factors in the induction and
exacerbation of asthma. This review presents
25 compounds of the 188 original HAPs that
should be further evaluated for their role in
asthma (Table 5). Several estimates of possi-
ble human exposures based on assessment of
release inventories suggest that among these
compounds, aldehydes (especially acrolein
and formaldehyde) and metals (especially
nickel and chromium compounds) may be of
particular concern for persons with asthma.
These and several other HAPs are known to
be or are related to compounds that are occu-
pational asthmagens.

Last, several HAPs that have not been
reported to produce asthma directly may be
particularly hazardous to persons with asthma
because they can exacerbate asthma through
repetitive irritation of airway epithelium.
Other HAP compounds can potentiate air-
way responses to inhaled antigens or are irri-
tating when inhaled. The latter includes
respiratory carcinogens that can form anti-
genic determinants through alkylation reac-
tions with cellular macromolecules. Further
research is needed to clarify the issues sur-
rounding the extent of human exposure and
the potential role of HAPs in asthma.
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